A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths.
نویسندگان
چکیده
Recent studies of the optical properties of semiconducting single-walled carbon nanotubes suggest that these truly nanometre-scale systems have a promising future in nanophotonics, in addition to their well-known potential in electronics. Semiconducting single-walled nanotubes have a direct, diameter-dependent bandgap and can be excited readily by current injection, which makes them attractive as nano-emitters. The electroluminescence is spectrally broad, spatially non-directional, and the radiative yield is low. Here we report the monolithic integration of a single, electrically excited, semiconducting nanotube transistor with a planar lambda/2 microcavity, thus taking an important first step in the development of nanotube-based nanophotonic devices. The spectral full-width at half-maximum of the emission is reduced from approximately 300 to approximately 40 nm at a cavity resonance of 1.75 microm, and the emission becomes highly directional. The maximum enhancement of the radiative rate is estimated to be 4. We also show that both the optically and electrically excited luminescence of single-walled nanotubes involve the same E11 excitonic transition.
منابع مشابه
Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths
An active, photonic band gap-based microcavity emitter in the near infrared is demonstrated. We present direct measurement of the spontaneous emission power and spectrum from a microcavity formed using a two-dimensional photonic band gap structure in a half wavelength thick slab waveguide. The appearance of cavity resonance peaks in the spectrum correspond to the photonic band gap energy. For d...
متن کاملMobile ambipolar domain in carbon-nanotube infrared emitters.
We spatially resolve the infrared light emission from ambipolar carbon-nanotube field-effect transistors with long-channel lengths. Electrons and holes are injected from opposite contacts into a single nanotube molecule. The ambipolar domain, where electron and hole currents overlap, forms a microscopic light emitter within the carbon nanotube. We can control its location by varying gate and dr...
متن کاملWidely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime.
The narrow emission of a single carbon nanotube at low temperature is coupled to the optical mode of a fiber microcavity using the built-in spatial and spectral matching brought by this flexible geometry. A thorough cw and time-resolved investigation of the very same emitter both in free space and in cavity shows an efficient funneling of the emission into the cavity mode together with a strong...
متن کاملOn-Chip Optical Nonreciprocity Using an Active Microcavity
Optically nonreciprocal devices provide critical functionalities such as light isolation and circulation in integrated photonic circuits for optical communications and information processing, but have been difficult to achieve. By exploring gain-saturation nonlinearity, we demonstrate on-chip optical nonreciprocity with excellent isolation performance within telecommunication wavelengths using ...
متن کاملSilicon photonic crystal thermal emitter at near-infrared wavelengths
Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silico...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature nanotechnology
دوره 3 10 شماره
صفحات -
تاریخ انتشار 2008